
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

An Example of a Lightweight Kernel

Ron Brightwell
Sandia National Labs

Scalable Computing Systems Department
rbbrigh@sandia.gov



Goals of Puma

• Targets high performance scientific and 
engineering applications on tightly coupled 
distributed memory architectures

• Scalable to tens of thousands of processors
• Fast message passing and execution
• Small memory footprint
• Persistent (fault tolerant)



Approach

• Separate policy decision from policy enforcement
• Move resource management as close to 

application as possible
• Protect applications from each other
• Get out of the way



General Structure

Q-Kernel: message passing, memory protection

App. 1

libmpi.a

libc.a

PCT App. 3

libvertex.a

libc.a

App. 2

libnx.a

libc.a



The Quintessential Kernel (Qk)

• Policy enforcer
• Initializes hardware
• Handles interrupts and exceptions
• Maintain hardware virtual addressing
• No virtual memory paging
• Static size
• Small size
• Non-blocking
• Few, well defined entry points



The Process Control Thread

• Runs in user space
• More privileges than user applications
• Policy maker

– Process loading 
– Process scheduling
– Virtual address space management
– Name server
– Fault handling



PCT (cont’d)

• Customizable
– Singletasking or multitasking
– Round robin or priority scheduling
– High performance, or debugging and profiling 

version
• Changes behavior of OS without changing the 

kernel



Levels of Trust

Node Hardware Node Hardware

Network

QK QK

App. App. App. App.

PCT PCT



CPU Modes

• Chosen at job load time
• Heater mode

– LWK and app on system processor
• Message co-processor mode

– LWK on system processor
– App on second processor

• Compute co-processor mode
– LWK and app on system processor
– App co-routines on on second processor

• Virtual node mode
– LWK and app on system processor
– Second app process on second processor



Portals Message Passing

• Basic building blocks for any high-level message 
passing system

• All structures are in user space
• A portal consists of one or more of the following:

– A memory descriptor
– A matching list

• Avoids costly memory copies
• Avoids costly context switches to user mode (up 

call)



Key Ideas

• Protection
• Kernel is small

– Very reliable
• Kernel has static size

– No structures depend on how many processes are 
running

– All message passing structures are in user space
• Resource management pushed out of the kernel 

to the process and the runtime system
• Services pushed out of the kernel to the PCT and 

the runtime system


